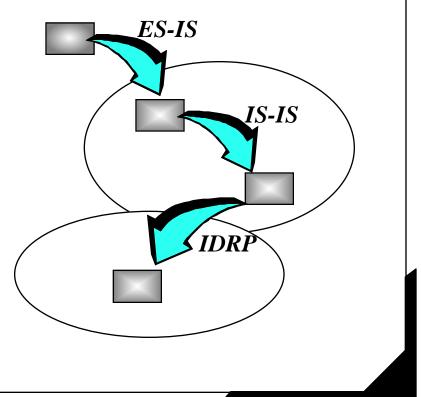
Guidelines for NSAP Allocation in the Internet

Elie I. Mourad August 12 1996

Introduction

- RFC 1629 obsoletes RFC 1237
- Internet becoming multi-protocol environment
- CLNP [Connectionless Network Protocol]
 - Routing
- Infrastructure requires address assignment
 - NSAP [Network Service Access Point]
 - 20 bytes for flexibility and scalability


- Introduction
- NSAP Requirements
- IS-IS Routing
- IDRP
- NSAP Hierarchical Routing
 - GOSIP V2
- Examples

Definitions

- Internet has multiple administrative authorities
- Network Service Provider
 - Provides datagram switching services to customers
 - Regionals, Commercial providers, government backbones
 - Mesh with no fixed hierarchy
- Network Service Subscribers
 - Customers
 - Do not provide datagrams to other organizations
 - Campuses, Corporate sites, etc..

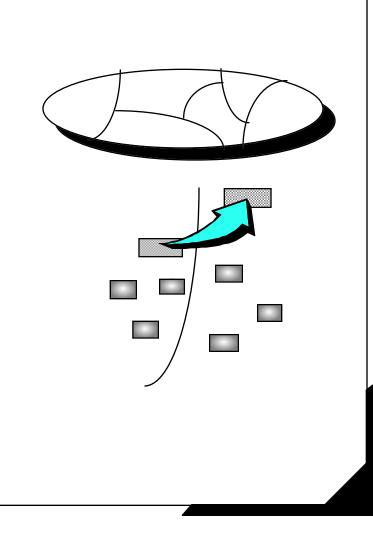
CLNP Traffic

- NSAP allocation issues related to routing
- CLNP traffic based on:
 - End-System to Intermediate system routing protocol [ES-IS]
 - intra-domain [IS-IS]
 - inter-domain routing protocol [IDRP]

NSAP Requirements

- Efficient operation of IS-IS routing
- Introduce topological information to reduce routing overhead in IDRP
- Hierarchy to support network growth
- Allow subscriber routing connected to more than one provider

Background


- OSI Routing Standards
 - Routing exchanges between hosts [ES-IS]
 - ISO 9542
 - Routing exchanges between routers in the same domains [IS-IS]
 - ISO 10589
 - Routing among routing domains [IDRP]
 - ISO 10747

IS-IS

- Internetwork partitioned into domains
- Routing domain [RD] is a collection of ES & IS are under control of single administration (corporate network, backbone, etc..)
- RD boundaries are defined by NM by setting links to exterior
- No IS-IS routing messages are sent on exterior links

IS-IS

- IS-IS uses 2-level hierarchival routing
- Routing domain divided into areas [Level 1 subdomain]
 - Level 1 routers know topology (all routers and hosts in their area)
 - Level 1 routers that do not know topology or destination outside their area
 - Level 1 routers route all traffic outside their area to Lever 2 routers within their area
 - Level 2 routers know reachable level
 2 addresses. They form level 2 subdomain.
 - Level 2 routers exchanges routing information outside their domain

OSI NSAP

- Flexible, variable length addressing format
 - Multi-Level hierarchical addressing
- Solves two critical problems:
 - Administer worldwide address space
 - Addresses which allows scalable routing in worldwide internet

OSI NSAP

ISO address:

IDP HO-DSP DSP

IDP = Initial Domain Part (Format and Authority standardized by ISO) = AFI + IDI DSP = Domain Specific Part AFI = Authority and Format Identifier, IDI = Initial Domain Identifier

IS-IS Routing:

Area Address = IDP + HO-DSP System Identifier SEL

Each router knows the length of ID and determines length of area address. Length of area address can vary in each area of a domain. Therefore area address does not have ot be any fixed length.

OSI NSAP

- Usually all nodes in an area have the same area address
- Possible to have more than one area address:
 - When changing an area address from A to B. Allow both area addresses to work at first
 - Merging areas A and B into one area
 - Partitioning area C into A and B

OSI NSAP

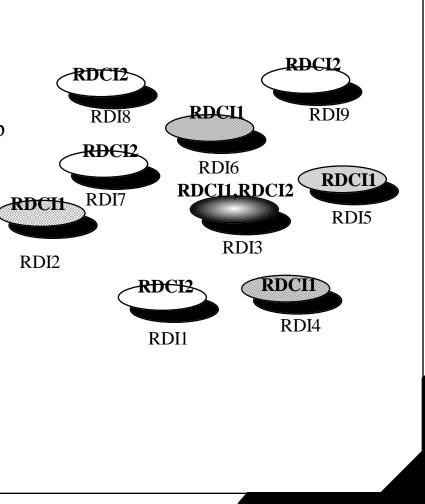
- Level 1 IS:
 - Route based on ID portion
 - Recognizes if destination address is within the area. If not route to nearest level 2 router
 - Cisco: station routing
- Level 2 IS:
 - Route based on prefix address
 - Prefers longest address match
 - Cisco: area routing

Neighbors

- Level 1 router
 - area address manually configured
 - refuse to become neighbor whose area address does not overlap
- Level 2 router
 - accepts any router to be neighbor regardless of area address
 - External links (routing to other domains)

Broadcasting

- If each router announces link to all other routers $O(n^2)$
- Use a "pseudonode". Each router reports to this node. Designated router reports Link State Packet to all other routers
- IS-IS authentication via a password
 - Initialize link
 - become member in an area or subdomain


IDRP

- Boundary Intermediate System [BIS]
 - router that participates in IDRP
- Adjacent domains are BIS that are external neighbors
- Internal BIS are BIS in same domain
- Internal neighbors don't have to share common subnetwork

	L

• Set of connected domains = Routing Domain Confederation [RDC]

- One domain can belong to many RDC
 - Nested RDC
 - all members of the RDCs overlap
 - Disjoint RDC
 - no members in common
 - Overlap RDC
 - some members in common
- Each domain is assigned a unique Routing Domain Identifier [RDI]
- Each RDC has a unique Routing Domain Confederation Identifier [RDCI]
- RDCI and RDI assigned from same pool via NM

IDRP

IDRP

- Grouping RDs into RDCs allows for routing aggregation and abstraction
- Reduction of topological information by replacing sequence of RDIs with since RDC
- Simplified route selection policies

Aggregation

- RDCs
 - Used to aggregate topology information
- Route aggregation mechanism. Network Layer Reachability Information [NLRI]
 - Complementary to RDC
 - Used to aggregate and provide data abstraction for routes

NSAP Routing

- Hierarchical Routing
 - Routing data abstraction and summarization
 - Reduce processing time, memory, transmission bandwidth
 - Scale to large networks
 - Example:
 - Provider gets a short address prefix
 - Assigns longer prefixes to the subscribers
 - Provider to provider reachability table is smaller
 - Recursive process

GOSIP Version 2

- Efficient routing and decentralized NSAP administration
- 47.0005.80 = US Government as Authority GOSIP v.2
- **39.0840** = **ANSI**
- AFI + IDI + DFI + AA = Administration prefix
- Administration prefix + RD = Routing domain prefix
- Routing domain prefix + AA = Area address

AFI	IDI	DFI	AA	Rsvd	RD	Area	ID	SEL
1	2	1	3	2	2	2	6	1
47	0005	80						

AFI = Authority and Format Identifier

- **IDI** = Initial Domain Identifier (DCC for ANSI)
- **DFI = DSP Format Identifier**
- **AA** = Administrative Authority (ORG for ANSI)
- **ID** = System Identifier

Packet switching AFIs

x.121	DATA	37,53
ISO DCC	Data Country Code	39
F.69	Telex	41,55
E.163	Public Network	43, 57
E.164	Public Network(B-ISDN)	45,59
ISO ICD	International Code Designator	47
Local	IDI = 0 no sub network	49

GOSIP v2

System	osi.ncsl.nist.gov
Organization	NIST (47.0005.80.005A00.*)
NSAP	47.0005.80.005a00.0000.0001.e137.080020079efc.00
	AFI.IDI.DFI.AA.Rsvd.RDI.ID.SEL

ISO-IGRP

AF	I	IDI	Area	ID	SEL			
1		var	2	6	1			
		– Domain ———	ł					
S	System	stem jaspar.NSD.3com.com						
C	Organization	ganization 3Com (47.0004.0035.*)						
1	NSAP	AP 47.0004.0035.1100.0800.2003.2£7£.00						
		DOMAIN.AREA.ID.SEL						

Europe - Finland

AFI	ICD	V	Network	TTA	FM	PA	Area	SW	MAC	SEL
1	2	1	3	1	2	1	1	1	6	1

System	datanet.tele.fi
Organization	Telecom Finland (47.0023.00.000003.00.0000.03.*)
NSAP	47.0023.00.000003.00.0000.03.00.01.1311.7710.4142.00

ATM Forum

AFI	ICD	HO-DS	MAC	SEL	
1	2	10	·	6	1
[<u> </u>		1		
AFI	DCC	HO-DS	MAC	SEL	
1	2	10		6	1
AFI		E.164	HO-DSP	MAC	SEL
1		8	4	6	1